
EECS 440 System Design of a Search Engine
Winter 2021

Lecture 1: Introduction

Nicole Hamilton
https://web.eecs.umich.edu/~nham/

nham@umich.edu

1

https://web.eecs.umich.edu/%7Enham/
mailto:nham@umich.edu

Nicole Hamilton

Education
BS & MS EE, Stanford, 1973.
MBA, Boston University, 1987.

Background
This is my fourth year at UM.
Started my career doing hardware design at IBM
but quickly moved into software.
Spent most of my career as an entrepreneur
selling a C shell I wrote for Windows.
When the dot-com collapse hit, I went to
Microsoft, where I worked on the first release of
Bing.
Thought I was retired 8 years ago when I
volunteered to advise some Capstone teams of
seniors in EE at University of Washington Bothell.
Turned out it paid, I loved it, one thing led to
another and here I am.

nham@umich.edu
https://web.eecs.umich.edu/~nham/
Office: Beyster 2649
C: 425-765-9574

Office hours:
https://umich.zoom.us/j/2852894520
Mon-Thu 4:30 to 5:30 pm

2

mailto:nham@umich.edu
https://web.eecs.umich.edu/%7Enham/
https://umich.zoom.us/j/2852894520

3

MSN Search in early 2005.

4

Joined the team in July 2003 as the
ninth member.

The ranker was the last major
piece no one had taken.

Wrote the ranker and the query
language for the first release in
January 2005.

Almost 30 KLOC in C++.

5

This is the fourth time I’m teaching this class, the first time
under its permanent number EECS 440.

You can read the supporting statement I had to submit to the
college to get it approved on Canvas in the documents folder.

I'm still working to improve it.

6

This semester

1. Will release all the HW for the entire semester.
2. New HTML parser and Bloom filter HW assignments.
3. All the HW except the first few will be groups of 2 or 3.
4. Will try to make it easier to meet teammates with some

speed-dating breakouts in the labs, and an online matching
site.

5. Adding more structure to the labs to help you through the
HW and how to apply it to your engine.

7

8

Week Dates Monday Lecture Wednesday Lecture Lab Topic Assignment
1 Wed Jan 20 to Sun Jan

24
Introduction Introduction and speed-dating

breakouts
1//24 HW 1: Most positive
subsequence

2 Mon Jan 25 to Sun Jan
31

Search engine basics Project planning Planning the project, what's
most important, speed dating
breakouts

1/31 HW 2: Personal goals and
Gantt chart for graduate school

3 Mon Feb 1 to Sun Feb 7 HTML, Utf8, HTTP and
redirects

TCP/IP, DNS, sockets Getting started with AWS 2/7 HW 3: HTML parser

4 Add/Drop deadline
Feb 8
Mon Feb 8 to Sun Feb
14

Listen, marshalling
data, SSL

Intro to the filesystem Read an HTTPS webpage. 2/8 G-HW 1: Group photos
2/14 G-HW 2: Project plan

5 Mon Feb 15 to Sun Feb
21

Mapped files Hashing and hashfiles WC a directory using mapped
files

Group meeting with Professor
Hamilton
2/21 HW 4: Read an HTTPS
webpage
2/21 G-HW 3: String and vector

6 Mon Feb 22 to Sun Feb
28

Processes and threads No lecture. Well-being
break Hash table and hash blob

2/28 HW 5: WC a directory using
mapped files

7 Mon Mar 1 to Sun Mar 7 Locks, RAII, and
producer-consumer
relationships

Tiny web server Multithreaded server 3/7 HW 6: Memory-mapped hash
table
3/7 HW 7: Memory-mapped hash
blob

8 Mon Mar 8 to Sun Mar
14

Midterm 3:00-5:00pm The frontier Bloom filter 3/14 HW 8: Multithreaded server

9 Mon Mar 15 to Sun Mar
21

The index The constraint solver Distributing your engine on
the cloud

3/21 HW-9: Bloom filter

10 Mon Mar 22 to Sun Mar
28

Top-down recursive
descent

The query compiler Simple expression parser

11 Mon Mar 29 to Sun Apr
4

Ranking JSON and a simple
web page

Presenting your search
results

4/4 HW 10: Simple expression
parser

12 Mon Apr 5 to Sun Apr
11

Duplicates and
shingling Beyond basic search

No labs. Staff meetings with
teams.

13 Mon Apr 12 to Sun Apr
18

Ethics Course debrief No labs. Staff meetings with
teams.

G-HW 4: Presentation slides

14 Mon Apr 19 to Wed Apr
21

Group presentations Group presentations No labs. G-HW 5: Final reports and code
snapshots
Group meeting and demo with
Professor Hamilton

15 Mon Apr 26 Final Exam 10:30am-
12:30pm

Lab instructors

9

Daniel Hoekwater
dhoek@umich.edu
Thursdays
3:00 to 4:00 pm
Zoom
https://umich.zoom.
us/j/99742264598

Alex Jalkanen
alexjalk@umich.edu
Thursdays
10:30 to 11:30 am
Zoom
https://umich.zoom.
us/j/94438882408

Alex Erf
alexerf@umich.edu

Fridays
10:30 to 11:30 am
Zoom
https://umich.zoom.
us/j/97763265848

You can attend any lab you like.

mailto:dhoek@umich.edu
https://umich.zoom.us/j/99742264598
mailto:alexjalk@umich.edu
https://umich.zoom.us/j/94438882408
mailto:alexerf@umich.edu
https://umich.zoom.us/j/97763265848

Course organization

1. You don’t need to know anything more than 281.

2. I will teach you everything else you need to know.

3. First half will focus operating system topics needed to build
the engine.

4. Second half will focus building a complete working internet
search engine.

5. You’ll have homework nearly every week to help you learn
the material. You’ll do most of it in groups.

10

Grading

Group project
Group performance 25%
Individual contribution 25%

Homework 20%
Midterm 15%
Optional final 15%

If you skip the final, I’ll use your midterm score.

Some of the grading will be done by surveys.

11

0

2

4

6

8

10

12

A+ A A- B+ B B- C+ C C- D+ D D- E

Grade Distribution
Median 3.7
Mean 3.5

Past curves

12

W18 Final Grades

0

5

10

15

20

25

A+ A A- B+ B B- C+ C

W19 Final Grades Min 2.70
Max 4.30
Mean 3.58
Median 3.70
Std dev 0.42

In the syllabus, I tell you
to expect that most
students will fall
between 2.8 and 4.0
with median around 3.2
or a little higher.

This is what I’ve actually
done.

The past is no guarantee
about the future.

F19 was surprising

Initially, lots of incompletes
from teams that needed to
demo in January 2020.

The midterm break comes too
late in the fall.

13

0
2
4
6
8

10
12
14
16

A+ A A- B+ B B- C+ C C- I

F19 Final Grades

0
2
4
6
8

10
12
14

A+ A A- B+ B B- C+ C C-

F19 Final Final Grades

All the work must be your own

1. Copying answers from another student or off the internet,
omitting attribution, submitting work that’s not your own
or attempting to deceive me will be reported for academic
misconduct.

2. I’m good at spotting misconduct and very good at
reporting it.

3. I do not give warnings. I report everything.

14

Where you’ll find stuff

Canvas for announcements, files, individual and group
homework assignments and grades.

Google docs for links to Zoom lecture recordings.

The autograder to test code for basic correctness.

Piazza for questions and discussion.

We expect to have a course website soon.

15

Learning objectives
1. Ability to work on a team to design a large software project you

don’t already know how to do.

2. Learn how a search engine works.

3. Appreciation of software as art.

4. Ability to create elegant, reliable code in C++.

5. Learn how a large system is decomposed into objects that talk to
each other.

6. Appreciation of how an application interacts with the operating
system and the user.

7. Familiarity with simple projecting planning tools and concepts,
Gantt charts, software metrics, LOC.

8. Appreciation of the what it means to be an ethical engineer.
16

Interwoven themes

1. What is system design?
2. What is a beautiful design?
3. How do you tackle a large project?
4. How do you work as a team?
5. How does a search engine work?
6. How do you use the operating system?

17

Textbooks

Information Retrieval: Implementing
and Evaluating Search Engines
Reprint edition (February 12, 2016)
Stefan Büttcher, Charles L.A. Clarke,
Gordon V. Cormack
The MIT Press
ISBN 978-0262528870

Required.
Read the first 6 chapters.

18

Characteristics of system design projects

1. There’s an important domain-specific part: You need to learn something
new about an interesting problem you’ve never seen before.

2. You need to invent a solution with lots of moving parts.

3. It’s usually “close to the metal”.

4. They're usually team efforts because they're too big to do any other way.

5. You get to build your part from scratch and it feels good.

19

A search engine hits on every bit of what a system design project is to me.
I also intend for it to relatable to family and friends and recruiters.
I want you to get jobs.

Project

You are to self-select into teams of 6 to design and build
an end-to-end search engine completely from scratch in
C++, assigning your own roles.

20

Past engines in LOC

21

Project total Individual
w18 w19 f19 w18 w19 f19

High 14,271 26,887 19,264 4,096 8,646 7,826
Median 5,300 13,000 11,973 1,006 1,750 1,572
Low 4,170 9,414 4,575 0 444 120

Past index sizes in documents

22

w18 w19 f19

High 13.4M 150M 586M
Median 8,000 4.65M 397M
Low 4,816 1.9M 207M

Project

These are the basic pieces you will need.

1. HTML parser.
2. Crawler.
3. Index.
4. Constraint solver.
5. Query compiler.
6. Ranker.
7. Front end.

23

Index files

Crawler

Index buildHTML parser

Seed list

The index build side

The query serve side

Index files

Front end

Constraint
solver

Query
compiler Ranker Results

Queries

Index server

Your search engine

1. You may deliver your engine on any platform but everyone always
chooses Linux.

2. I will arrange Amazon AWS accounts for all of you.
3. All of your work will be in C++ and all of it must be yours.
4. All your code must conform to my stylesheet.
5. I care less about test cases than I do about getting things working.
6. You are discouraged but not prohibited from using STL anywhere

the details of the implementation matter.
7. You will meet with me and the course staff periodically as a team

to discuss your plans and progress.
8. You will have a final review, demo, submit a paper and an archive

of your code.
9. You will give a short presentation.

26

Levels of functionality

0. Create a plan.
1. Parse text files into a hash table.
2. Build a crawler.
3. Build a reverse word index.
4. Create a user interface.
5. Build a constraint solver and query parser.
6. Build a ranker.
7. Advanced functionality, e.g., distributed processing.

27

What are the most important determinants
of all your outcomes in life?

I suggest it’s all the other people in your life.
Sometimes, you get to choose.

28

Observations

On the best-performing teams:

1. They like each other.

2. They buy into the rules and set out to win at them.

3. Their plans are filled with a lot of brain-storming about the
problems they need to solve and how they’ll do it.

4. There’s a lot of brain-storming in their execution as well.

5. They come to my office frequently.

29

Observations
On teams having difficulties:

1. Their plans are often thin on detail, treating much of the
design as TBD once we got to the appropriate lecture.

2. They check off some “all of the above” boxes, e.g., “all of
level 7”, without much analysis of what that would entail.

3. There are questions about who is in charge. Decisions don’t
get made. No one is available to meet at the same time.

4. They don’t do a lot of brainstorming and they don’t resolve
technical questions with technical arguments.

5. Interfaces between the components and what each
component does are unclear.

6. They complain about the rules.
30

Observations

What makes for a great teammate:

1. They step up and get stuff done.

2. It’s less about what they know and more about what
they’re willing to do.

3. They have lots of ideas but they don’t insist on their own.

4. They respect boundaries.

5. They’re available and supportive.

31

Your first group activity will be form a group and submit a
group photo.

We’ll do “speed dating” breakouts in the labs this week to
help you get to know others in the class.

You may also find Alex’s https://group-finder.com helpful.

32

https://groupfinder.com/

Group photo

1. You are to form groups of 6, choose a name for your
group and submit a photo of yourselves.

2. You must all appear in the photo. Faces have to be
clearly visible and easily recognized.

3. Each person must be named in the photo.

4. Your group name must appear in the photo.

5. You may not spend any money on this.

6. You can edit the image.

7. You may not steal copyrighted artwork.

8. You may use public domain images.

33

1. This assignment is competitive based on
creativity and execution.

2. Your grades will be determined by a vote.
3. Please submit only one copy for the entire team.

34

Here were some past submissions.

35

36

37

38

39

40

41

42

43

44

45

46

47

My usual experience

A team’s performance on the simple task of submitting a
creative photo of themselves is often predictive of how
they’ll do on everything else.

Please don’t do something lame.

48

Who is this?

49

Edsger Dijkstra
(1930 – 2002)

Dutch computer scientist, coined
“structured programming”,
known for his work on mutual
exclusion, winner of the first
ACM Turing Award in 1972.

50

Edsger Dijkstra

Big believer in the importance of simplicity
and highly critical of baroque programming
languages with lots of features, especially
PL/I, the C++ of the day.

51

Edsger Dijkstra

“I absolutely fail to see how we can keep our
growing programs firmly within our
intellectual grip when by its sheer
baroqueness the programming language –
our basic tool, mind you! – already escapes
our intellectual control.”

“The Humble Programmer”, CACM, October
1972.

52

Why I’m not a fan of STL

Algorithmic and tuning choices, performance and size
tradeoffs and other issues are much harder to spot when
hidden inside an opaque template, especially where the
whole point of the template is that you’re not supposed
to care how it works inside.

53

How big is an STL string?

54

How big is an STL string?
It depends on the compiler and OS.

With the MS compiler, an empty string takes 36 bytes = 28 bytes on
the stack + 8 bytes on the heap. New'ing a string, it's the same two
chunks but both go on the heap. Adding "hello" does not require
additional memory. Adding another 28 characters requires another 48
bytes.

With Cygwin g++, an empty string takes 8 bytes whether it's on the
heap or the stack. But the moment you add "hello" to it, it jumps to
38 bytes. Adding another 28 characters requires another 58 bytes
allocated and 30 freed.

With g++ under WSL, an empty string takes 32 bytes whether it's on
the heap or the stack. Adding "hello" does not require additional
memory. Adding another 28 characters requires another 34 bytes.

55

Your team grade on the project

Competitive, based on ranking your engine’s functionality,
performance, e.g., time and size to crawl, create or
search a multi-terabyte index, its features and quality
against the engines created by the other teams on the
same and different platforms.

56

Your individual grade on the project

Based primarily on the code you contributed, including:
1. The number of lines of code you wrote,
2. The complexity of the tasks it performs,
3. Its performance,
4. The creativity and the overall elegance.
I will also consider other contributions you made to your team
as measured by survey of your teammates.

57

HW1 MostPositiveSubsequence()

Write a C++ function that can scan a sequence of N
integers in an array A, returning the sum and the left
and right indices of the most positive subsequence.

For example, for the sequence

{ -1, 3, 5, 6, -2, -4, 1, 7, -15, 12, 7, -5 }
0 1 2 3 4 5 6 7 8 9 10 11

the best sum = 20, left = 1, right = 10.

58

1. Due Sunday, January 24, 2021.

2. Write and submit two C++ files to the autograder.

a. MostPositiveSubsequence.cpp, containing your
implementation of the MostPositiveSubSequence()
function.

b. BestSubsequence.cpp, containing a simple main()
routine that takes a sequence on the command line an
argv and reports the results.

3. You must also demonstrate that you can build and debug it
with a graphical debugger by uploading a screenshot
showing you stepping through your code.

59

HW1 MostPositiveSubsequence()

General rules for homework

Unless otherwise specified:

1. You must solve it on your own or as a registered group.

2. You are to make good choices anywhere you find the spec
ambiguous and you will be judged on them.

3. You may not discuss it with others or use the internet or
other resources to help.

60

Who is this?

61

Steve Jobs (1995—2011)

Shown here giving his
commencement address at
Stanford, 2005.

Image source: http://bullandbearmcgill.com/wp-content/uploads/2014/04/img_steve.jpg

62

http://bullandbearmcgill.com/wp-content/uploads/2014/04/img_steve.jpg

“You’ve got to find what you love. And
that is as true for your work as it is for
your lovers. Your work is going to fill a
large part of your life, and the only
way to be truly satisfied is to do what
you believe is great work. And the
only way to do great work is to love
what you do. If you haven’t found it
yet, keep looking. Don’t settle.”
-- Steve Jobs

Source: http://news.stanford.edu/2005/06/14/jobs-061505/

63

http://news.stanford.edu/2005/06/14/jobs-061505/

Who is this?

64

Don Knuth
Professor Emeritus at Stanford

Famous for his Art of Computer
Programming textbooks.
(Seven planned, only 3 written.)

He was my professor 45 years
ago for CS 144A and B,
introduction to algorithms and
data structures.

Image source: https://en.wikipedia.org/wiki/File:KnuthAtOpenContentAlliance.jpg
65

https://en.wikipedia.org/wiki/File:KnuthAtOpenContentAlliance.jpg

Don Knuth on programming as art

“When I speak about computer
programming as an art, I am thinking
primarily of it as an art form, in an aesthetic
sense. The chief goal of my work as educator
and author is to help people learn how to
write beautiful programs.”
-- Don Knuth, CACM, December 1974

Source: http://www.paulgraham.com/knuth.html

66

http://www.paulgraham.com/knuth.html

“My feeling is that when we prepare a
program, it can be like composing poetry or
music; … programming can give us both
intellectual and emotional satisfaction,
because it is a real achievement to master
complexity and to establish a system of
consistent rules.”

67

So what is beautiful code?

68

Beautiful code

“I may not know art but I know what I like.”

“If they can’t tell me how they would improve it if they could
do it over, I won’t hire them.”

“Artists are never done with a piece, they just stop working
on it.”

69

Beautiful code

To me, beautiful code should be:
1. Elegant, easy to read, sparse, clear.
2. Stylish.
3. Fast and efficient.
It should make a hard problem seem easy.
To get better, you must be able to criticize your work.

70

Beautiful code

Consider the problem:
Write a function that determines if a C-string contains doubled
letters.

71

Here is one sample solution.

bool has_doubled_letters(const char *str) {
const char *ptr = str + 1;
while (*str != '\0' && *ptr != '\0') {

if (*str == *ptr) {
return true;

}
++str, ++ptr;

}
return false;

}

72

Here is another.

bool HasDoubledLetters(const char *s)
{
while (*s && s[0] != s[1])

s++;
return *s;
}

73

bool has_doubled_letters(const char *str) {
const char *ptr = str + 1;
while (*str != '\0' && *ptr != '\0') {

if (*str == *ptr) {
return true;

}
++str, ++ptr;

}
return false;

}

bool HasDoubledLetters(const char *s)
{
while (*s && s[0] != s[1])

s++;
return *s;
}

Can we say if we like one better than another?

74

A lot of problem-solving is coming up with ideas of how
to do something.

75

A lot of problem-solving is coming up with ideas of how
to do something.

For example, a lot of debugging is coming up with ideas
of how you got it wrong and how you’ll find your
mistake.

76

The number 1 problem many people make is stopping
with their first idea.

They refuse to ask what’s wrong with it and how it
could be made better or if a different idea would be
even better.

77

Who is this?

78

Linus Pauling (1901-1994)

American chemist, biochemist,
peace activist.

Nobel Prizes in Chemistry and
Peace.

Image source: http://www.villages-news.com/linus-pauling-and-prostate-cancer/

79

http://www.villages-news.com/linus-pauling-and-prostate-cancer/

He was asked, “How do you
get so many good ideas?”

80

“If you want to have good ideas
you must have many ideas.
Most of them will be wrong,
and what you have to learn is
which ones to throw away.”

-- Linus Pauling

As quoted by Francis Crick in his presentation, “The Impact of Linus Pauling on Molecular Biology” (1995).
81

http://oregonstate.edu/dept/Special_Collections/subpages/ahp/1995symposium/crick.html

Do you think people will steal your new
idea?

82

https://www.youtube.com/watch?v=eywi0h_Y5_U

83

https://www.youtube.com/watch?v=eywi0h_Y5_U

If an idea is really new, it’s surprisingly hard to give it away.

If it’s really good, most people will think you’re crazy.

Most people have trouble imagining how their life would
be different and why they would want that.

New ideas

84

Problem-solving versus
problem-choosing

85

A fabulous solution to a problem nobody cares about is
still a solution nobody cares about.

But even a mediocre solution to a really important
problem can be important.

86

Opportunities are created when the world changes.

Something becomes possible that wasn’t before.

87

https://www.youtube.com/watch?v=_uXtWIg_A7M

88

https://www.youtube.com/watch?v=_uXtWIg_A7M

What made search engines possible

The insight was that you could do it.

You could spider the entire web and make and index your
own private copy of the whole thing. Processors, bandwidth
and storage were so cheap you could do it.

When MSN Search went live in Jan 2005, we had 10 rows of
500 machines, each with a copy of 1/500-th of the entire web
= 10 complete copies.

89

	EECS 440 System Design of a Search Engine�Winter 2021�Lecture 1: Introduction
	Nicole Hamilton
	Slide Number 3
	Slide Number 4
	Slide Number 5
	This is the fourth time I’m teaching this class, the first time under its permanent number EECS 440.��You can read the supporting statement I had to submit to the college to get it approved on Canvas in the documents folder. ��I'm still working to improve it.��
	This semester
	Slide Number 8
	Lab instructors
	Course organization
	Grading
	Slide Number 12
	F19 was surprising
	All the work must be your own
	Where you’ll find stuff
	Learning objectives
	Interwoven themes
	Textbooks
	Characteristics of system design projects
	Project
	Past engines in LOC
	Past index sizes in documents
	Project
	Slide Number 24
	Slide Number 25
	Your search engine
	Levels of functionality
	Slide Number 28
	Observations
	Observations
	Observations
	Slide Number 32
	Group photo
	Slide Number 34
	Here were some past submissions.
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	My usual experience
	Slide Number 49
	Slide Number 50
	Edsger Dijkstra
	Edsger Dijkstra
	Why I’m not a fan of STL
	How big is an STL string?
	How big is an STL string?
	Your team grade on the project
	Your individual grade on the project
	HW1 MostPositiveSubsequence()
	HW1 MostPositiveSubsequence()
	General rules for homework
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Don Knuth on programming as art
	Slide Number 67
	So what is beautiful code?
	Beautiful code
	Beautiful code
	 Beautiful code
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Opportunities are created when the world changes.��Something becomes possible that wasn’t before.
	Slide Number 88
	What made search engines possible

